Student Compost Cooperative

Basics and troubleshooting

Crystal D. Hartman

- 1. TEMPERATURE
 - 2. SUBSTRATE
 - 3. MOISTURE
 - 4. AERATION
 - 5. MIXING

1. TEMPERATURE

- 2. SUBSTRATE
- 3. MOISTURE
- 4. AERATION
 - 5. MIXING

TEMPERATURE

- Master variable
- Heat generated by microbial action
- Indicates microbe health
- 40-60 degrees C (100 to 140 F)
- Temp peak in 1-2 days (for small/medium pile)
- Above 40 C for 5-14 days
- Size determines temperature curve

TEMPERATURE **2. SUBSTRATE** 3. MOISTURE

- 4. AERATION
 - 5. MIXING

SUBSTRATE

Browns and Greens

• Browns

- Low moisture
- 1 part brown (by weight)

• Greens

High moisture

High nitrogen

- 1 part green (by weight)
- Particle size
 - \checkmark size = \uparrow surface area = \uparrow action
- BULKING AGENTS
 - big pieces =more air

RELATION TO TEMPERATURE

Heat generated by microbes' consumption and waste.
Warm compost=feasting microbes

List of Browns leaves, paper, peat

moss, sawdust, cornstalks, hay and straw, grass clippings, garden waste

List of Greens

Kitchen waste such as vegetable scraps, old food, coffee grounds, egg shells,

DO NOT COMPOST!!!

Meat, dairy, oils or oily foods, meat-eater manure, catlitter, chemicals, synthetic materials

TEMPERATURE
 SUBSTRATE
 MOISTURE
 AERATION
 MIXING

MOISTURE

- 50-60% moisture
- Damp, not wet
- Microbes' living medium
- Add water when turning

RELATION TO TEMPERATURE

- Movement and reproductive medium for microbe's
 Warm compost =
 - moving microbes
- •Facilitates decomposition

- 1. TEMPERATURE
 - 2. SUBSTRATE
 - 3. MOISTURE

4. AERATION

5. MIXING

AERATION

- Compost is aerobic
- \mathbf{V} Particle size = \mathbf{V} aeration
- Bulking agents = ↑ aeration
- Related to mixing
- Temperature spikes

RELATION TO TEMPERATURE

Microbes need to breathe
More O₂ = more microbes
More microbes = faster compost

- 1. TEMPERATURE
 - 2. SUBSTRATE
 - 3. MOISTURE
 - 4. AERATION

5. MIXING

MIXING

- Promotes aeration
- Distributes and removes pockets of
 - air
 - Moisture
 - Microbes
 - Substrates
- Makes microbes
 happy

RELATION TO TEMPERATURE

- Microbial facilitation
- •Mixing = temp spikes
- •Cold indicates turning needed

TROUBLESHOOTING

Indicators of imbalance

No/slow

Pests

decomposition \rightarrow Causes: Too brown or dry, needs turning

Low temp \rightarrow Causes: too dry or brown, needs turning

- High temp → Causes: Too green, too much heat trapped

 \rightarrow Causes: Unwanted materials, easy access

Bad smell \rightarrow Causes: Too wet or green, needs turning

Hey, this food should be in the compost. Beary bad!

MICROBES AND YOUR COMPOST

•Think of it as a microbe farm

•You provide the home, food, water-all the inputs needed to raise healthy creatures.

•In return, the microbes efficiently convert your waste into rich growing medium for plants.

QUESTIONS AND LINKS

- http://www.compostingcouncil.org/
- http://compost.css.cornell.edu/Composting_homepage.html
- http://whatcom.wsu.edu/ag/compost/
- http://casfs.ucsc.edu/education/instruction/tofg/download/un it_1.7_compost.pdf
- http://www.compostinfo.com/tutorial/microbes.htm

